1/3x+1/4=1/2x+6

Simple and best practice solution for 1/3x+1/4=1/2x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+1/4=1/2x+6 equation:



1/3x+1/4=1/2x+6
We move all terms to the left:
1/3x+1/4-(1/2x+6)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x+6)!=0
x∈R
We get rid of parentheses
1/3x-1/2x-6+1/4=0
We calculate fractions
12x^2/96x^2+32x/96x^2+(-48x)/96x^2-6=0
We multiply all the terms by the denominator
12x^2+32x+(-48x)-6*96x^2=0
Wy multiply elements
12x^2-576x^2+32x+(-48x)=0
We get rid of parentheses
12x^2-576x^2+32x-48x=0
We add all the numbers together, and all the variables
-564x^2-16x=0
a = -564; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·(-564)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*-564}=\frac{0}{-1128} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*-564}=\frac{32}{-1128} =-4/141 $

See similar equations:

| 4c(7c-4)(4c-1)=0 | | 20m-19m=14 | | 7(-7k-4)=224 | | 50h=190=45h | | 14-12k=12 | | 2x-3+3+4x=8 | | -2(6a+6)=84 | | |4x+6|-5=22 | | −2x+6x−8=12 | | x-0.8x+4=2.6 | | 14q-11q=9 | | 1-y-5=3y-25 | | 4x+6x=36 | | 11/3+5y=10y-1/12 | | 2x+4+3x=9x+x-11 | | (5y-5)°=180° | | x3+x2-100x-100=0 | | 4*x+9=x*2-1 | | 7F+9=8-4f | | 10-3a=6-2a | | 3(n-5)+2=3n-10 | | -7(x+6)=-98 | | -z–-10z–-39z–2z+-42z=-24 | | 8z–6=7z | | x/x+6=36/x+6 | | 3.9+10m=8.68 | | -5(6p-7)=-145 | | 36^x=30000 | | 8+6p=92 | | 5d-2d=9 | | 13-y=(y-3) | | 3x(4x+4)=6(x^2+1) |

Equations solver categories