1/3x+1/4=5/6x-1

Simple and best practice solution for 1/3x+1/4=5/6x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+1/4=5/6x-1 equation:



1/3x+1/4=5/6x-1
We move all terms to the left:
1/3x+1/4-(5/6x-1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x-1)!=0
x∈R
We get rid of parentheses
1/3x-5/6x+1+1/4=0
We calculate fractions
108x^2/288x^2+96x/288x^2+(-240x)/288x^2+1=0
We multiply all the terms by the denominator
108x^2+96x+(-240x)+1*288x^2=0
Wy multiply elements
108x^2+288x^2+96x+(-240x)=0
We get rid of parentheses
108x^2+288x^2+96x-240x=0
We add all the numbers together, and all the variables
396x^2-144x=0
a = 396; b = -144; c = 0;
Δ = b2-4ac
Δ = -1442-4·396·0
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{20736}=144$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-144}{2*396}=\frac{0}{792} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+144}{2*396}=\frac{288}{792} =4/11 $

See similar equations:

| (10y-21y)/3=0 | | 9x-15*4=3 | | (x=8)^2=16-x^2+9x | | 1.9x=3.42 | | 36=7v+1 | | -3(-7n+2)=1-4(1-6n) | | -64+9x=24+13x | | (10y-7y)/3=0 | | -7x+7+4x=-8 | | -3=-5x+-28 | | x+10=-40+6x | | (9a-5)+(4a+7)=0 | | -4x^2-20x-24=0 | | n/2-7=18 | | 4(x+3)+2=8+5x | | 3x2 + 18x = 0 | | 5/6x−71/30=9/5 | | -10-1x-3x=30 | | 5-(-x-x=-1 | | 2x^2+5x=2x+2 | | 48h+553=553 | | 28=-2d+6 | | 4x-9=8x-14 | | x2-13x=130 | | 17-2p´=4p+5 | | -4x+5(x-5)=-6x+6(1-2x) | | 4x+49=9-6 | | 5+9x-7=4x-2-x | | (9x-11)+(2x+17)=x | | -5=9+c4 | | -7+5x=4x-7 | | -160+10x=-x+115 |

Equations solver categories