If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+1/5=7/6(-7-3)
We move all terms to the left:
1/3x+1/5-(7/6(-7-3))=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
1/3x+1/5-(7/6(-10))=0
We calculate fractions
108x^2/540x^2+()/540x^2+(-(7*3x*5)/540x^2=0
We add all the numbers together, and all the variables
108x^2/540x^2+()/540x^2+(-(+7*3x*5)/540x^2=0
We multiply all the terms by the denominator
108x^2+(-(+7*3x*5)+()=0
We calculate terms in parentheses: +(-(+7*3x*5)+(), so:We get rid of parentheses
-(+7*3x*5)+(
We add all the numbers together, and all the variables
-(+7*3x*5)
We get rid of parentheses
-7*3x*5
Wy multiply elements
-105x*5
Wy multiply elements
-525x
Back to the equation:
+(-525x)
108x^2-525x=0
a = 108; b = -525; c = 0;
Δ = b2-4ac
Δ = -5252-4·108·0
Δ = 275625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{275625}=525$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-525)-525}{2*108}=\frac{0}{216} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-525)+525}{2*108}=\frac{1050}{216} =4+31/36 $
| -2y=45+y | | 13+12=+5(4x-5) | | m/9-11=4 | | 4(2x-8)=3(2-3x | | x3.9=12.4 | | -3y=45+y | | 3(2d-2-(8-2d)=-30 | | 3(x+1)^2=108 | | 2g+-10+8g=1-g | | 0.15(x+4000)=4300 | | 6x+6=-10x+25+2x | | -7(-1+7p)=154 | | y-3=2/3y+3 | | 65h=130h(3) | | 12g=12(2/3g-1)+1 | | (-6i)^2=0 | | 3(b-4)=-12+8b | | 4x^2+42x-46=0 | | -4(1-4r)=124 | | 3x+56=49 | | 19+13•x=32 | | 5.00-4y=10 | | 7=-5x+3(x-2)+5 | | 2(4x+8)=34+26 | | 9d+3=5d-9 | | 3x+49=56 | | 5x=3-(-1-x) | | 92=4(2-7x) | | 0.4y=7.2 | | 12+5+19+19+20+8+1+14+7+18+5+1+20+5+18+20+8+1+14+5+17+21+1+12+20+1+x=297 | | -24=6a-15=-5a | | 27+x/8=22 |