1/3x+1=1/9x+10

Simple and best practice solution for 1/3x+1=1/9x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+1=1/9x+10 equation:



1/3x+1=1/9x+10
We move all terms to the left:
1/3x+1-(1/9x+10)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x+10)!=0
x∈R
We get rid of parentheses
1/3x-1/9x-10+1=0
We calculate fractions
9x/27x^2+(-3x)/27x^2-10+1=0
We add all the numbers together, and all the variables
9x/27x^2+(-3x)/27x^2-9=0
We multiply all the terms by the denominator
9x+(-3x)-9*27x^2=0
Wy multiply elements
-243x^2+9x+(-3x)=0
We get rid of parentheses
-243x^2+9x-3x=0
We add all the numbers together, and all the variables
-243x^2+6x=0
a = -243; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·(-243)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*-243}=\frac{-12}{-486} =2/81 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*-243}=\frac{0}{-486} =0 $

See similar equations:

| (x+40)+(2x-5)+(3x+17)=180 | | 5(2h-7)=15 | | 1.2x40=1.2x4x | | (5x-3)-(6x+2)=(4x-8)-(1-2x) | | y/3-8=0 | | 2(2x-1)=-(x-3) | | 22x-1=-(x-3) | | 3x+5+6x-4=10x-9 | | c) X–70=45 | | (x+5)2=(x−5)2+10 | | 9^x+2=240+9^x | | 5k+7/2=14-k | | 8x-17=+6 | | (D2-3D+1)y=0 | | 4.3^(x+1)=27+9x | | 2x^-4x=6 | | 2(y-2)-9y+14=0 | | X^2-y^2=106 | | 4.2(2x)−10.2×+4x=0 | | 5-(4x-2)=130 | | 4.2^x-10.2x+4=0 | | (2x=18)(4x-14) | | 2(y^-2)-9y+14=0 | | 3x+32=-7 | | 2x-1+12=10 | | 2n+12=10 | | J+2j=93 | | 5/7=25/p | | 2e+9=81 | | 3.4-2.8d+2.8d=-1.3 | | (3x)³+2x³=0 | | -2√x=-6 |

Equations solver categories