1/3x+2/3x=x+1

Simple and best practice solution for 1/3x+2/3x=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+2/3x=x+1 equation:



1/3x+2/3x=x+1
We move all terms to the left:
1/3x+2/3x-(x+1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We get rid of parentheses
1/3x+2/3x-x-1=0
We multiply all the terms by the denominator
-x*3x-1*3x+1+2=0
We add all the numbers together, and all the variables
-x*3x-1*3x+3=0
Wy multiply elements
-3x^2-3x+3=0
a = -3; b = -3; c = +3;
Δ = b2-4ac
Δ = -32-4·(-3)·3
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{5}}{2*-3}=\frac{3-3\sqrt{5}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{5}}{2*-3}=\frac{3+3\sqrt{5}}{-6} $

See similar equations:

| 180=5x-25+3x-9 | | x+124=348 | | 2/3(7x-4)+5=3 | | –9u+7u=–14 | | 3+8v+5v=7v+7 | | 8x+2=9x-x | | −3/8r+41=−22 | | 5/3(6x+3)=2x+7 | | -32=w-12= | | 8x-21=131 | | 180=(5x-25)(3x-9) | | -1=7-2g | | 10k+1-2k=7k-17 | | (2x+16)+(3x-11)=180 | | -15+4-5x=-25x+5+1+5x | | 7x+24=3x-4 | | y-5y-50=-12-10 | | 36/w=9 | | 6(5x-6)+7=1 | | x=5/3=-2 | | −38r+41=−22 | | 20+6g+20=-16-g | | 3p-9=⅓(9p-27) | | 2/5(8n-5)=9/5n | | |4x|+8=16 | | 2y-13=-4-3y | | u-4.69=5.4 | | 1.4(-7x-1)+7=-5 | | y+1/4=-3/5 | | 6(1+x)=4+4(3x-7) | | 45h*100=347.50 | | 9.92+16.7u=9.5u-16.1+8.02 |

Equations solver categories