1/3x+2x-1=x+3

Simple and best practice solution for 1/3x+2x-1=x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+2x-1=x+3 equation:



1/3x+2x-1=x+3
We move all terms to the left:
1/3x+2x-1-(x+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/3x-(x+3)-1=0
We get rid of parentheses
2x+1/3x-x-3-1=0
We multiply all the terms by the denominator
2x*3x-x*3x-3*3x-1*3x+1=0
Wy multiply elements
6x^2-3x^2-9x-3x+1=0
We add all the numbers together, and all the variables
3x^2-12x+1=0
a = 3; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·3·1
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{33}}{2*3}=\frac{12-2\sqrt{33}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{33}}{2*3}=\frac{12+2\sqrt{33}}{6} $

See similar equations:

| 8×4×k+9×5=(36-4)k-(2×5) | | 2-x-7=35x+2 | | x+4÷-2=3x+1÷3 | | -6=-2r+8r | | 31.20=6g+3.84 | | 4a+1=7a+4 | | 5(8x-1)+2x=-4 | | -7n-4=-4n-(n-8) | | -6+6n=n+8n | | 3n-4n=6 | | -3x+2(x+5)=6 | | 20x/6=5x/3 | | 20w-9w=4(15-w) | | 24x-18+8x=14 | | 4m-7m=12 | | 4x-6x/2=6-2x | | 3+2z+17z=79 | | -6x-3x=0 | | -7b-2b=18 | | -5p-8p=39 | | 3(8x-6)+8x=14 | | 6+2x+9=x+11 | | 7+½(6x+4)=-2x+4 | | 5(x-2)-3=3(x+1)-9x | | 3x-6(x+4)=-9 | | 7x+2(x+6)=37 | | (5x)(6x)=30x2 | | -(2x+4)=—22 | | 3x+3-10x-4=90 | | 5x-2-4x=1 | | X/2+2-x=2x+4 | | 7x+3-6x=-2 |

Equations solver categories