1/3x+3/2-5/6x=3

Simple and best practice solution for 1/3x+3/2-5/6x=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+3/2-5/6x=3 equation:



1/3x+3/2-5/6x=3
We move all terms to the left:
1/3x+3/2-5/6x-(3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
determiningTheFunctionDomain 1/3x-5/6x-3+3/2=0
We calculate fractions
324x^2/72x^2+24x/72x^2+(-60x)/72x^2-3=0
We multiply all the terms by the denominator
324x^2+24x+(-60x)-3*72x^2=0
Wy multiply elements
324x^2-216x^2+24x+(-60x)=0
We get rid of parentheses
324x^2-216x^2+24x-60x=0
We add all the numbers together, and all the variables
108x^2-36x=0
a = 108; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·108·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1296}=36$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*108}=\frac{0}{216} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*108}=\frac{72}{216} =1/3 $

See similar equations:

| 0.6x+0.9(20−x)=16.20.6x+0.9(20-x)=16.2 | | -2(y-6y)+3=-3(3y-y)+8+15y | | 60÷5(7-2)=x | | 8/3x+1/3x=4x | | x/2/3-11=4x | | 5/6x-10=15 | | x²+19x-90=0 | | 30=5x+9+5x-30-7x | | |x^2-3x-1|=3 | | 2600=(2x-6)*(x+3) | | 5x−3=x+17 | | 6|4+7v|=0 | | x+-0.025x=341.25 | | 6x(x+1)=3(x-6) | | 5(3t−4)−(t2+2)−3t(t−4)=0 | | 2h+8-h=-3 | | -5/2+4/5u=-7/3 | | 18=(r/7)+25 | | 4(x-5)=4x+10 | | −18f−34−14f=11 | | 9x+12=51 | | 46(2x)=2(3x8) | | 6r+3=2r+23 | | ​6/​h​​−1=3 | | 6(a-5)+4=2(a-5) | | -6+14x+13x+3=180 | | 5(x3)x=4(x3)3 | | 30x^2+15=0 | | (-0.08+x)/5=-0.01 | | ​6​/h​​−1=3 | | 52(32x)=x3(x1) | | 1=(f/6)-3 |

Equations solver categories