If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+4+380=x
We move all terms to the left:
1/3x+4+380-(x)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
-1x+1/3x+384=0
We multiply all the terms by the denominator
-1x*3x+384*3x+1=0
Wy multiply elements
-3x^2+1152x+1=0
a = -3; b = 1152; c = +1;
Δ = b2-4ac
Δ = 11522-4·(-3)·1
Δ = 1327116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1327116}=\sqrt{196*6771}=\sqrt{196}*\sqrt{6771}=14\sqrt{6771}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1152)-14\sqrt{6771}}{2*-3}=\frac{-1152-14\sqrt{6771}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1152)+14\sqrt{6771}}{2*-3}=\frac{-1152+14\sqrt{6771}}{-6} $
| 17x=2.4x+54000 | | 2y+3y=4-6-13 | | 4-14=5x | | (¼)x+2=4 | | 2x-(7-3x)=12 | | -2x+3x-5=6-21 | | -5s-8=47 | | -4u+7=-10u+32 | | 4x+3(x+-2)=7(x+2)+8 | | (X/1)+(1/x)-(41/20)=0 | | 6x-8=3x-38 | | 11g-6g-4=16 | | 70=7m | | 3(x-3)-7+2x=19 | | 44/n=n+8 | | 8.5=x/10 | | X/1+1/x-41/20=0 | | 30=16+1/5j | | 5x-1=3+9 | | 5(x–2)=30 | | x-7=4+10 | | 5-6(k-4)=0 | | 12x+8-5x=15 | | 3x-(5x-4)=3(2x-5)-5 | | -2/9v=6 | | (x+6)(x-6)-13=0 | | (2/3x-8)=(5/6) | | (5+6i)/(2-3i)=0 | | 2x-4-3x-1=4x | | (x/3)+(x/2)+15=x | | 7-3=2x+7x-8 | | a-7=84 |