If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+40+(x-10)+(x-20)=360
We move all terms to the left:
1/3x+40+(x-10)+(x-20)-(360)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
1/3x+(x-10)+(x-20)-320=0
We get rid of parentheses
1/3x+x+x-10-20-320=0
We multiply all the terms by the denominator
x*3x+x*3x-10*3x-20*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-30x-60x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $
| -3x-6=-6x+6 | | 19p+10=-14p-9 | | 6n−5=4n+9 | | 7-x/20=5 | | 12-3x=5x–44-5x=3x-12 | | 25y+12=6(8y-4)-23y+36 | | 5x-4x-2=10,x= | | -11x-53=15-7x | | 7(y-1)=4(y-1)+15 | | -34+2x=10 | | 12.49+18.9y=-17.71+2.4y+14.5y | | 4(x-1)-5=-28.2 | | —x=7x-56 | | 12x-4=17x+18 | | 12-3x=5x–4 | | 3x+9+6x-1= | | 14g=146 | | 21x+17=3(4x-1)+9x+25 | | 14-5(y-10)=4-8(y+5) | | 3x−3=x-9 | | c=0.05+12.25 | | (12x-3)-(15x-6)=-72 | | X-7=-21,x= | | y/4-3.3=9.7 | | 4-5x=3-2x | | 21x+17=3(4x-1)+9+25 | | -3+4v=1 | | -10.1n-18.2=-19.2n | | 5x2+8-6/2=7 | | (x+88)=(22+88) | | (17)/(9)=-x-(9)/(3) | | 2(x+5)-10=-2 |