1/3x+6=1/9x

Simple and best practice solution for 1/3x+6=1/9x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+6=1/9x equation:



1/3x+6=1/9x
We move all terms to the left:
1/3x+6-(1/9x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(+1/9x)+6=0
We get rid of parentheses
1/3x-1/9x+6=0
We calculate fractions
9x/27x^2+(-3x)/27x^2+6=0
We multiply all the terms by the denominator
9x+(-3x)+6*27x^2=0
Wy multiply elements
162x^2+9x+(-3x)=0
We get rid of parentheses
162x^2+9x-3x=0
We add all the numbers together, and all the variables
162x^2+6x=0
a = 162; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·162·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*162}=\frac{-12}{324} =-1/27 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*162}=\frac{0}{324} =0 $

See similar equations:

| 60x=5x | | 6d-8=6 | | 5x=65-20 | | 8-6d=6 | | (x-8)²=0 | | 2x-3+3x=4 | | 3(x+6)-2=x+16+2x | | 5a+9=3a-9 | | (3x+6)^2=20 | | 0.5^2x=3995.943485 | | 3x+10=8x-20 | | (3x-1)^2=45 | | (4x/5)-(3/4)=(2x+3)/4)+6 | | 3z-7=7z-5 | | (4x/5)-(3/4)=(2x+3/4)+6 | | 6k−2k=20 | | x+3x+10=2x-20 | | 13m−11m=14 | | 2(5+1+3)=x | | 3/5x+x=56 | | 5u−3u=12 | | 4(x+3)=8x-13 | | x^-3=7 | | 4x^2-(x+1)^2=0 | | 3(2x-1)=-24 | | 12-5+x=5+9-6 | | 8m+2m=20 | | 6(3x-2)=4x+9-x | | 6(3x-2)=4x+9-2 | | 25x^2-8x+2=0 | | x-71=-50 | | 7k^2-2=19 |

Equations solver categories