1/3x+7=2/9x-6

Simple and best practice solution for 1/3x+7=2/9x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+7=2/9x-6 equation:



1/3x+7=2/9x-6
We move all terms to the left:
1/3x+7-(2/9x-6)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x-6)!=0
x∈R
We get rid of parentheses
1/3x-2/9x+6+7=0
We calculate fractions
9x/27x^2+(-6x)/27x^2+6+7=0
We add all the numbers together, and all the variables
9x/27x^2+(-6x)/27x^2+13=0
We multiply all the terms by the denominator
9x+(-6x)+13*27x^2=0
Wy multiply elements
351x^2+9x+(-6x)=0
We get rid of parentheses
351x^2+9x-6x=0
We add all the numbers together, and all the variables
351x^2+3x=0
a = 351; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·351·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*351}=\frac{-6}{702} =-1/117 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*351}=\frac{0}{702} =0 $

See similar equations:

| 191/2x=13 | | 9h=6h+6+15 | | 18x-4+12+16x=90 | | -1/3(2(x)-2)=9 | | 18x-4+12+16x=180 | | 56=4(r+11) | | 99+3x+6x=180 | | 4x=2x+42+6 | | d-38=60 | | 4+1/2m=20 | | 16=4.9+g | | 4=m-15 | | A=z+7)3 | | 9x5=5x9 | | m3−2m5=1/5 | | k^2+4=29 | | –3+5r=–7+6r | | (x/8)-2=9 | | 30=3.14✕r2 | | -3(s+17)=-27 | | (n/5)+3=10 | | |3x-9|+5=11 | | (x/2)+4=7 | | 30/3.14=r2 | | (x/3)-6=10 | | 10-4y=2(y-7) | | 0.1x+25=5000 | | x/7+x/7=16 | | 7(y-3)=5 | | -9z=-162 | | 19m2+5m−12=−6m2 | | 12=1.6x |

Equations solver categories