1/3x+9=3/4x+-1

Simple and best practice solution for 1/3x+9=3/4x+-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+9=3/4x+-1 equation:



1/3x+9=3/4x+-1
We move all terms to the left:
1/3x+9-(3/4x+-1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x+-1)!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(3/4x-1)+9=0
We get rid of parentheses
1/3x-3/4x+1+9=0
We calculate fractions
4x/12x^2+(-9x)/12x^2+1+9=0
We add all the numbers together, and all the variables
4x/12x^2+(-9x)/12x^2+10=0
We multiply all the terms by the denominator
4x+(-9x)+10*12x^2=0
Wy multiply elements
120x^2+4x+(-9x)=0
We get rid of parentheses
120x^2+4x-9x=0
We add all the numbers together, and all the variables
120x^2-5x=0
a = 120; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·120·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*120}=\frac{0}{240} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*120}=\frac{10}{240} =1/24 $

See similar equations:

| 2*20-3*w=96 | | 3.2x+2.6=-2.6 | | x=3.5+0.5(11-x) | | t2+6t–16=0 | | 6/7x+1/2=1/3-1/7x+1/3 | | 4.6q-3.8-4.1q=-0.5q-1.2 | | 2*20-3w=96 | | 11÷15-10=d+15 | | 3x+5-10=2x-2 | | 2(20)-3w=96 | | 11d÷15-10d=d÷15 | | -2x-2=x+1.75 | | Z^2+16z+63=0 | | 3/5y+4=-8 | | -14(d-15)=-14 | | z/5+4=16 | | z|5+4=16 | | -x-8/10=-x-3/2 | | 36+47x+35+46x-71=-99 | | 10x-93+93=180 | | 2^(3x+2)=0.25 | | 1/5w+9/5w=0 | | 3.5x+10=2x+5 | | 4=1.28w^2/3 | | v=-7 | | 2(r+4)=18 | | 10x+10x+44=66 | | 8b+7=-1 | | 2=1.25w^2/3 | | 10x+10(x+4.4)=66 | | 100x^2+18x+81=0 | | -x–5=-7 |

Equations solver categories