1/3x+9=5/8x+12

Simple and best practice solution for 1/3x+9=5/8x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+9=5/8x+12 equation:



1/3x+9=5/8x+12
We move all terms to the left:
1/3x+9-(5/8x+12)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 8x+12)!=0
x∈R
We get rid of parentheses
1/3x-5/8x-12+9=0
We calculate fractions
8x/24x^2+(-15x)/24x^2-12+9=0
We add all the numbers together, and all the variables
8x/24x^2+(-15x)/24x^2-3=0
We multiply all the terms by the denominator
8x+(-15x)-3*24x^2=0
Wy multiply elements
-72x^2+8x+(-15x)=0
We get rid of parentheses
-72x^2+8x-15x=0
We add all the numbers together, and all the variables
-72x^2-7x=0
a = -72; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·(-72)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*-72}=\frac{0}{-144} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*-72}=\frac{14}{-144} =-7/72 $

See similar equations:

| -6(w+7)=2w+30 | | 3(3x+4)−5=3x+5 | | 9w-33=6(w-1) | | 25x+8=1/4x+8 | | -12=3u+3(u-2) | | 3n+8=16 | | 6r+47=95 | | 0.22(x+8)=0.2x+1.5 | | 2x-6/2+5x=-15 | | 4m+7-9m=5(m+2)-10m | | 19=-5w+3(w+7) | | 20+2p=70 | | 13=13/4x | | 10-70x=15x | | (x+7)+(4x-3)+(3x)=180 | | 3(2x-4)=-12+6x | | 10=r+24 | | 2x+0.01x=0.01 | | x^+8x=240 | | 5(g-75)=40 | | 6(x-2)=5x-12x | | 4+2r=1+3r | | 8y=59.4 | | 7x+143+6x+11=90 | | 3x^2-900x+84000=0 | | 1/4n+-45=-11 | | 3(x+5)-5x=4(x+3)+6x | | k+29/6=8 | | 5x+3-3x+1=6x+2-x+3 | | 96=8(f+1) | | -1.4x=9(x+2.16) | | 51=b/9+46 |

Equations solver categories