If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+x=100
We move all terms to the left:
1/3x+x-(100)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
x+1/3x-100=0
We multiply all the terms by the denominator
x*3x-100*3x+1=0
Wy multiply elements
3x^2-300x+1=0
a = 3; b = -300; c = +1;
Δ = b2-4ac
Δ = -3002-4·3·1
Δ = 89988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{89988}=\sqrt{4*22497}=\sqrt{4}*\sqrt{22497}=2\sqrt{22497}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-300)-2\sqrt{22497}}{2*3}=\frac{300-2\sqrt{22497}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-300)+2\sqrt{22497}}{2*3}=\frac{300+2\sqrt{22497}}{6} $
| 3v+8+v=15+3v | | 14=6y+10 | | 0=-(x+3)(x-2) | | 5x+32=12x+35 | | 9x-17=5x+6 | | 3r-7-5r=-19 | | 5k=-5+4÷6 | | (x-28)=3x | | 5/2+(7-5x)/(2x+8)+(25x^2-35x+35)/(2x^2+8x)=8 | | 9x^2-72x+35=0 | | 2xˆ2+15x=0 | | 2x*3x=216 | | 7x^2-80x+35=0 | | -2(3t-5)+3t=8t-6 | | 477=14-3n | | 4x-16=2-x | | g13=234 | | 100^2t=8^3t | | 10x=170−7x | | -8x+9;x=7 | | 8t^2=3-10t | | x2+3x;x=7 | | 2(x+30)=75 | | P(x)=-10×^2+3500x-66000=-10(x-20)(x-330) | | 3.8x-(-1-9.7x)=2.6+ | | x/3+5=x/2 | | -30+5p=3+2(1+6p) | | 100x-35x=325 | | y+4y-12y=0 | | 11-6x=-8x+7 | | y=X+(X*0.25) | | 3200=100x*2x |