If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+x=24
We move all terms to the left:
1/3x+x-(24)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
x+1/3x-24=0
We multiply all the terms by the denominator
x*3x-24*3x+1=0
Wy multiply elements
3x^2-72x+1=0
a = 3; b = -72; c = +1;
Δ = b2-4ac
Δ = -722-4·3·1
Δ = 5172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5172}=\sqrt{4*1293}=\sqrt{4}*\sqrt{1293}=2\sqrt{1293}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-2\sqrt{1293}}{2*3}=\frac{72-2\sqrt{1293}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+2\sqrt{1293}}{2*3}=\frac{72+2\sqrt{1293}}{6} $
| 4x-(6)=2x-(4) | | 10(s-4)=-109 | | 10x-12=8x+5 | | 13r-52.50=99.30 | | 3v-7v=40 | | 3(x+1)-2=6- | | 15x=5(×+4) | | 5(4s+10)=250 | | 1n=12n | | j12–18=-17 | | j/12–18=-17 | | 1.25x-0.5=0 | | 4x-2+7x=-1 | | 5x+3=11x-39 | | 2j–75=-31 | | 2k+11=17 | | -16=-8y+6(y-3) | | 4z/9+3=-3 | | 2(x-2)=22-x | | 3x^2=-5+16x | | 4u+17=9 | | 9(j-4)=1 | | y/3+4=-1 | | g/2+9=14 | | 7f+4=-3 | | y/3+4=-17 | | 3^n=28 | | p/3–3=3 | | 10+10=20x+175 | | a/2+2=-4 | | u+42=3u+26 | | 52x=560 |