1/3x-1/5=1/5x+1

Simple and best practice solution for 1/3x-1/5=1/5x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-1/5=1/5x+1 equation:



1/3x-1/5=1/5x+1
We move all terms to the left:
1/3x-1/5-(1/5x+1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+1)!=0
x∈R
We get rid of parentheses
1/3x-1/5x-1-1/5=0
We calculate fractions
125x/375x^2+(-3x)/375x^2+(-3x)/375x^2-1=0
We multiply all the terms by the denominator
125x+(-3x)+(-3x)-1*375x^2=0
Wy multiply elements
-375x^2+125x+(-3x)+(-3x)=0
We get rid of parentheses
-375x^2+125x-3x-3x=0
We add all the numbers together, and all the variables
-375x^2+119x=0
a = -375; b = 119; c = 0;
Δ = b2-4ac
Δ = 1192-4·(-375)·0
Δ = 14161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{14161}=119$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(119)-119}{2*-375}=\frac{-238}{-750} =119/375 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(119)+119}{2*-375}=\frac{0}{-750} =0 $

See similar equations:

| 3=2x+8/x^2 | | -9x+7=2x+1 | | 1/2x-3=-1/2x+2 | | 3.5x1.2= | | 13=g/5+7 | | -3x+10=x5-8 | | 3(2x-1)+x=6x+3 | | -4=3n+4 | | -1.5x-25=3.5x+10 | | 89=99999-x+14564-184553 | | (p-4)72=5 | | -9x-33=4x | | x/4=9=11 | | 8(1+5k)-5k=253 | | 8*x=2x*4 | | -54+13x=3x+6 | | 3x-9+15+20=2 | | 8x-2=6.25x+26x | | 3/x-3=2+x/x-3 | | -36m+16=6 | | 8x-2=6.25x+25x | | 0=155t-4.9t^2 | | 1/3x-2=20 | | x+8=5x-2+1x | | 1/x-4+4=21/x-4 | | -9.6n-5.1n-9.74=-9.9n+8.98 | | 30x+14=15x+10 | | X/3+6=2/3x+11 | | 30x+14=15x10 | | 3x-44=-6x+55 | | 52=a/11+48 | | 6-(5+2x-6/7=6/5(x-5)-4+x/3 |

Equations solver categories