1/3x-1/9x=1/18

Simple and best practice solution for 1/3x-1/9x=1/18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-1/9x=1/18 equation:



1/3x-1/9x=1/18
We move all terms to the left:
1/3x-1/9x-(1/18)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-1/9x-(+1/18)=0
We get rid of parentheses
1/3x-1/9x-1/18=0
We calculate fractions
(-243x^2)/486x^2+162x/486x^2+(-54x)/486x^2=0
We multiply all the terms by the denominator
(-243x^2)+162x+(-54x)=0
We get rid of parentheses
-243x^2+162x-54x=0
We add all the numbers together, and all the variables
-243x^2+108x=0
a = -243; b = 108; c = 0;
Δ = b2-4ac
Δ = 1082-4·(-243)·0
Δ = 11664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{11664}=108$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(108)-108}{2*-243}=\frac{-216}{-486} =4/9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(108)+108}{2*-243}=\frac{0}{-486} =0 $

See similar equations:

| 5x+207=50 | | 0.14(y-9)+0.12y=0.06y-0.6 | | 6y-30=52 | | 5-6k=3+10(8-7k) | | -3y+3=y+4 | | 6(y-5)=52 | | 5-6k=3+10(8-7k | | 6n-2(n+4)=0 | | b-75/2=8 | | q/5+18=21 | | -14=w/4-9 | | (4x^2-6+3x)/(7+4x)=0 | | 49.10=5+2.10a | | -42=12+-9g | | 2^(2x)=13 | | 9-10x-4×=3× | | 7x/4-2=-9 | | -5(w-89)=-10 | | 2n+26=9n+77 | | 2^2x=13 | | 46+10n=6-2-16n | | 6u^2-15u+12=0 | | 35d+12=5d+3(4+10d) | | 4(x−6)=−24 | | (x+1)(x+2)(x+3)(x+4)+24=0 | | d-6=6-4 | | (3x-15)+(2x+35)=180 | | 7+5k=8+1k | | r/5=12 | | 5-6x=8+11x | | 2-3x+1/4=2(2x+1)/3-5x-1/2 | | x+24-8=7 |

Equations solver categories