1/3x-2=2/9x+4

Simple and best practice solution for 1/3x-2=2/9x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-2=2/9x+4 equation:



1/3x-2=2/9x+4
We move all terms to the left:
1/3x-2-(2/9x+4)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x+4)!=0
x∈R
We get rid of parentheses
1/3x-2/9x-4-2=0
We calculate fractions
9x/27x^2+(-6x)/27x^2-4-2=0
We add all the numbers together, and all the variables
9x/27x^2+(-6x)/27x^2-6=0
We multiply all the terms by the denominator
9x+(-6x)-6*27x^2=0
Wy multiply elements
-162x^2+9x+(-6x)=0
We get rid of parentheses
-162x^2+9x-6x=0
We add all the numbers together, and all the variables
-162x^2+3x=0
a = -162; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-162)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-162}=\frac{-6}{-324} =1/54 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-162}=\frac{0}{-324} =0 $

See similar equations:

| 24-3t=12 | | 120=37.11+0.25x | | 10x-7=4x+29 | | 11m+m+4m-14=14 | | 11^2+x=61^2 | | 36x/14x=13/2x-(-5/7x) | | 7x+4-3=44 | | 24−3t=12 | | 20g-3g-16g=13 | | -4(5x-2)+7=5 | | 20n+7n-n-3n-18n=-10 | | 6(1-12b)=-7(10b+4) | | 2/5=5/n | | 3x+11=+21 | | 1/4x+2/5x=1/2x-9/20 | | 6x-10=6x-10=180 | | 5x+9-2x=12 | | -56+49n=0 | | 5.2+46=x | | 11x=273 | | 6(x-3)/4=3(x+2)/7 | | -2+49n=0 | | 4r+5r-7r=18 | | 4a+14=6a-8 | | 48+4y-16=12y-10-2y | | 2=n/4−4 | | -4(2x+8)=-8x-32 | | 7-2r+3=-10-7r | | 0=-4.9x^2+14x-5 | | 2=n4-4 | | x÷7.8+25=27 | | 0.75x-3=7.5 |

Equations solver categories