1/3x-4/3=-1/6x-1

Simple and best practice solution for 1/3x-4/3=-1/6x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-4/3=-1/6x-1 equation:



1/3x-4/3=-1/6x-1
We move all terms to the left:
1/3x-4/3-(-1/6x-1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x-1)!=0
x∈R
We get rid of parentheses
1/3x+1/6x+1-4/3=0
We calculate fractions
6x/162x^2+27x/162x^2+(-24x)/162x^2+1=0
We multiply all the terms by the denominator
6x+27x+(-24x)+1*162x^2=0
We add all the numbers together, and all the variables
33x+(-24x)+1*162x^2=0
Wy multiply elements
162x^2+33x+(-24x)=0
We get rid of parentheses
162x^2+33x-24x=0
We add all the numbers together, and all the variables
162x^2+9x=0
a = 162; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·162·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*162}=\frac{-18}{324} =-1/18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*162}=\frac{0}{324} =0 $

See similar equations:

| .5x+17=1/2(37x+5)-(23x-5) | | .50x+.25(30)=24.5 | | 2x+10-4x=19+x | | 1/2a+20=50 | | 8/7=v/4 | | 5(t+3)–11=24 | | -7m-3=-6m+3(6m-1) | | 7•x-2=12 | | 5q=7q+18 | | 8b+7+11=2b-18 | | 2/3x-9=-1/2-+4 | | 7=r/5+4 | | -5+8(1-4a)=-61 | | 10^2-4(m)(6m-5)=0 | | 1+4x=2x+5(x+5) | | 6(40)=5a(8) | | (3x+2)+(x-1)+(x+4)=180 | | -8+7(p+7)=41 | | 2t=4t+4 | | -6-7p=-8p | | X-5=-2/3x+5/2 | | -10-4j=8+2j | | -3(v+1)+5=-3v+2 | | 2(3x+4)=2x+24 | | 5x(2-x)+7x=-3(x+5) | | 800=350+.06x | | -39+7x=6(x-8)+3 | | 10k-4k-9=9+3k | | 9=27/z | | 10k−4k−9=9+3k | | 9-3v=1-4v | | -10-1s=9s |

Equations solver categories