1/3x-5/6=3/2x-9

Simple and best practice solution for 1/3x-5/6=3/2x-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-5/6=3/2x-9 equation:



1/3x-5/6=3/2x-9
We move all terms to the left:
1/3x-5/6-(3/2x-9)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x-9)!=0
x∈R
We get rid of parentheses
1/3x-3/2x+9-5/6=0
We calculate fractions
(-60x^2)/216x^2+72x/216x^2+(-324x)/216x^2+9=0
We multiply all the terms by the denominator
(-60x^2)+72x+(-324x)+9*216x^2=0
Wy multiply elements
(-60x^2)+1944x^2+72x+(-324x)=0
We get rid of parentheses
-60x^2+1944x^2+72x-324x=0
We add all the numbers together, and all the variables
1884x^2-252x=0
a = 1884; b = -252; c = 0;
Δ = b2-4ac
Δ = -2522-4·1884·0
Δ = 63504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{63504}=252$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-252)-252}{2*1884}=\frac{0}{3768} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-252)+252}{2*1884}=\frac{504}{3768} =21/157 $

See similar equations:

| 22⋅x−12⋅2x−64=0 | | 22⋅x−12⋅2x−64=0. | | 3(x+55)+3x=855 | | 45+6b=9b | | 56+7z=11z | | -m+6-3m=3m+14-3m | | 4k+55=9k | | 10=p/1.5 | | 395+89x=662 | | 2(2x+5)=4x(3) | | 2p=3(1-p) | | 2k-4k=3k | | 2p-52=p | | 18x+30=6(12x-1) | | 8m^2=40m | | u.89=45 | | -5(x-5)+4x+4=45 | | a+93=11a+23 | | 3x^=375 | | 6-8x=12-6x | | 16+7y=41+2y | | 2y-25=2-7y | | 4-3y=10-5y | | 5y-22=8-10y | | 24-2y=14y-24 | | 4x-2/8=9 | | Y=2/3x=1/4 | | Y=0.6x=0.4 | | x-1/2=x+1/4 | | 5x+34=2x+37 | | 18c+17=3c+47 | | 2b+16=6b |

Equations solver categories