1/3x-5=4+1/2x

Simple and best practice solution for 1/3x-5=4+1/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-5=4+1/2x equation:



1/3x-5=4+1/2x
We move all terms to the left:
1/3x-5-(4+1/2x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(1/2x+4)-5=0
We get rid of parentheses
1/3x-1/2x-4-5=0
We calculate fractions
2x/6x^2+(-3x)/6x^2-4-5=0
We add all the numbers together, and all the variables
2x/6x^2+(-3x)/6x^2-9=0
We multiply all the terms by the denominator
2x+(-3x)-9*6x^2=0
Wy multiply elements
-54x^2+2x+(-3x)=0
We get rid of parentheses
-54x^2+2x-3x=0
We add all the numbers together, and all the variables
-54x^2-1x=0
a = -54; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-54)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-54}=\frac{0}{-108} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-54}=\frac{2}{-108} =-1/54 $

See similar equations:

| x+264=360 | | 8(x−3)+15=55 | | 4x+17-x=2(x+5) | | -11-n=-13 | | 4/5=6/y-1 | | -17-x=-12 | | (5x+13)+(2x-12)=360 | | x+298=360 | | x3=512x, | | 2/5x+3/7x=1 | | 8(5-3a)=2(9-3a) | | 4x-2​(x-5​)=-8+5x+9 | | (5x+13)+(2x-12)=244 | | 2.4*10^-16=(x)(2x) | | 8x+2=6(4x-4) | | 11x+9x-2+5x=28 | | 3/2y=2.1 | | -69=7(7x-14) | | 2(6)x+11-4x=14 | | a+80=180 | | 3/2y-5/2=-2y-2/5 | | 2n−611=5 | | 6^x=1/125 | | 2/3y-5/2=-2y-2/5 | | x-7/8=29/24 | | 2/3x=3.5333333333333 | | 9y-3(4y-3)=-3 | | 23x=3.5333333333333 | | x+4/5=5/10 | | -4(-3x+3)-4x=2(x-4)-7 | | c+2/3=8/9 | | 3(y+11)=6(2y-3) |

Equations solver categories