If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x^2-40=13
We move all terms to the left:
1/3x^2-40-(13)=0
Domain of the equation: 3x^2!=0We add all the numbers together, and all the variables
x^2!=0/3
x^2!=√0
x!=0
x∈R
1/3x^2-53=0
We multiply all the terms by the denominator
-53*3x^2+1=0
Wy multiply elements
-159x^2+1=0
a = -159; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-159)·1
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{159}}{2*-159}=\frac{0-2\sqrt{159}}{-318} =-\frac{2\sqrt{159}}{-318} =-\frac{\sqrt{159}}{-159} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{159}}{2*-159}=\frac{0+2\sqrt{159}}{-318} =\frac{2\sqrt{159}}{-318} =\frac{\sqrt{159}}{-159} $
| 3z=z+44 | | 1/4x3+21=37 | | 5x+7=-4x-11 | | |z−6|+3=5 | | 3.25+z=6.75 | | -7y+4(-3y+4)=-36-9y | | 4z+5z+7=z+8 | | 10(x+11)=-20(8-x) | | 3.6h=-10-8 | | Y°+(y-30)°+90=180 | | 34+.8x=44+.3x | | 15-3t-15=-3t | | p2–8p+7=0 | | (z-5)/3=6 | | 70n+34=3000 | | 3(x+11)+17=5 | | 3(x+11)+17=15 | | 6x-15=-2x+17 | | .50x+1=50 | | 6x-15+-2x+17=180 | | 10n-5=-3n-44 | | 110m=200 | | 3(6x+6)+(-6)=138 | | N+5(1+2n)=-83 | | 28=v-115/29 | | 17(z+10)=663 | | 100+20y=0 | | 950=19(n+38) | | 950=10(n+38) | | 7(5x/1)=203 | | 2.5n=45.5 | | -5x+2+1=-17 |