1/3x=10+1/8x

Simple and best practice solution for 1/3x=10+1/8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x=10+1/8x equation:



1/3x=10+1/8x
We move all terms to the left:
1/3x-(10+1/8x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 8x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(1/8x+10)=0
We get rid of parentheses
1/3x-1/8x-10=0
We calculate fractions
8x/24x^2+(-3x)/24x^2-10=0
We multiply all the terms by the denominator
8x+(-3x)-10*24x^2=0
Wy multiply elements
-240x^2+8x+(-3x)=0
We get rid of parentheses
-240x^2+8x-3x=0
We add all the numbers together, and all the variables
-240x^2+5x=0
a = -240; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-240)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-240}=\frac{-10}{-480} =1/48 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-240}=\frac{0}{-480} =0 $

See similar equations:

| 5(a+4)=2(7a+10) | | 3x+17+2x+8=90 | | 5x-30=31 | | x=6*7 | | 7(m+4)=55 | | 7.1x+4=4 | | 5/8=4r | | 6x+1=2(3x-2)+5 | | 1. a–2+3=-2 | | 2x-3=43x-1 | | O.6x=0.225 | | (1/m)+((5m+5)/1)=1 | | 5(b+7)=3(2b+9) | | -2=2/3b | | (1/m)+((5m+5))=1 | | 12(y+5)=7(2y-3) | | 2x+4x=3+3x | | 42=-7/2y | | 5x+4-6x=-7-x-3 | | 53.75^z=44 | | 6x+21=52 | | 3x+2(—5)=35 | | -43.46=-8.2w | | 3x-9+6x+18=99 | | 3x-9=6x-18=99 | | -245=-35h | | -3+4x=19 | | 2x^2+700=0 | | 3x+9=6x-18=99 | | 3/8+x=2/3 | | 16x−4−8x=8x−10 | | 4x-25=2x-1 |

Equations solver categories