1/3x=15,x=

Simple and best practice solution for 1/3x=15,x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x=15,x= equation:



1/3x=15.x=
We move all terms to the left:
1/3x-(15.x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(+15.x)=0
We get rid of parentheses
1/3x-15.x=0
We multiply all the terms by the denominator
-(15.x)*3x+1=0
We add all the numbers together, and all the variables
-(+15.x)*3x+1=0
We multiply parentheses
-45x^2+1=0
a = -45; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-45)·1
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*-45}=\frac{0-6\sqrt{5}}{-90} =-\frac{6\sqrt{5}}{-90} =-\frac{\sqrt{5}}{-15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*-45}=\frac{0+6\sqrt{5}}{-90} =\frac{6\sqrt{5}}{-90} =\frac{\sqrt{5}}{-15} $

See similar equations:

| 85x−310=12 | | 7x^2–8x=-1 | | y-5y+100=0 | | 18+12y+2y=0 | | 379+51x=x | | 14x(16x+15)=45 | | -3(x+2)=5(2-x) | | (x+51)=x | | 9x=45,x= | | 379°+(x+51°)=x° | | 3.1=-5.9+x,x= | | 13=t+12 | | -27=x+5.x= | | (13x16)=(12x) | | 2(3r+□)=6r+28 | | 5x-9=3x-73 | | x-11=-3.8,x= | | P(Zz0)=0.9212 | | 6x+5x=10x+2/ | | 72x-288=280 | | -2/5*x=28 | | -2r+7=-31 | | –x+2=x+7+6x | | 5x–x–2=4+x | | 4x+6x+10x=20+30+10 | | 24x-240=96 | | S-2s=7 | | -5-2a=-27 | | x+8+x–3=2x+6 | | 4s+6s=50 | | 6x-4x=-2 | | 7x-24=-11 |

Equations solver categories