1/3y+3=1/7y.

Simple and best practice solution for 1/3y+3=1/7y. equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3y+3=1/7y. equation:



1/3y+3=1/7y.
We move all terms to the left:
1/3y+3-(1/7y.)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 7y.)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
1/3y-(+1/7y.)+3=0
We get rid of parentheses
1/3y-1/7y.+3=0
We calculate fractions
7y/21y^2+(-3y)/21y^2+3=0
We multiply all the terms by the denominator
7y+(-3y)+3*21y^2=0
Wy multiply elements
63y^2+7y+(-3y)=0
We get rid of parentheses
63y^2+7y-3y=0
We add all the numbers together, and all the variables
63y^2+4y=0
a = 63; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·63·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*63}=\frac{-8}{126} =-4/63 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*63}=\frac{0}{126} =0 $

See similar equations:

| -6(t+1)-t-7=-7(t+4)+15 | | -8/9x+1/3=2/9 | | -3j+3j=0 | | 1/2x+3/2(6x-60)=-7 | | 7/8t=28 | | 2x2+x=1 | | -11x+5(x+3)=-4(x-5)-19 | | x^=169 | | 1/4-(x)=0.09 | | −11x+5(x+3)=−4(x−5)−19 | | 3(3-y)-19=17y-5(2+4y) | | 5/x+2-2x-1/5=0 | | 1/3×(x)=0.4 | | -4x+7x-6=3(x-3)-3 | | 1/3×(x)=0,4 | | 2(6t+1)-13=t(t+10) | | 3(x+2)^2-1=74 | | 7(z+1)-2(z-2)=2(z-4)+2(z-1) | | -7(-3-8a)=-37-2a | | 9=-3(21-x)+2(x-4) | | 1/4y-5/2=3 | | 4(3x-8)-2=4(x-4)+22 | | 2x+4(-2x)=6 | | -3(-6+8n)-6(1+2n)=-60 | | 4(5t+1)-13=t-(t+8) | | 2(x+3)=8(x-2)-8 | | 2/5x+4=123 | | 1.32-(x)=4/5 | | 6(-8n+3)+7n=141 | | 15(y-3)=3(3y+5) | | 11b=b+10b | | 4x-9=5x+ |

Equations solver categories