1/4(16x)-2=7x+2-3x

Simple and best practice solution for 1/4(16x)-2=7x+2-3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4(16x)-2=7x+2-3x equation:



1/4(16x)-2=7x+2-3x
We move all terms to the left:
1/4(16x)-2-(7x+2-3x)=0
Domain of the equation: 416x!=0
x!=0/416
x!=0
x∈R
We add all the numbers together, and all the variables
1/416x-(4x+2)-2=0
We get rid of parentheses
1/416x-4x-2-2=0
We multiply all the terms by the denominator
-4x*416x-2*416x-2*416x+1=0
Wy multiply elements
-1664x^2-832x-832x+1=0
We add all the numbers together, and all the variables
-1664x^2-1664x+1=0
a = -1664; b = -1664; c = +1;
Δ = b2-4ac
Δ = -16642-4·(-1664)·1
Δ = 2775552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2775552}=\sqrt{256*10842}=\sqrt{256}*\sqrt{10842}=16\sqrt{10842}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1664)-16\sqrt{10842}}{2*-1664}=\frac{1664-16\sqrt{10842}}{-3328} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1664)+16\sqrt{10842}}{2*-1664}=\frac{1664+16\sqrt{10842}}{-3328} $

See similar equations:

| 0.5^x=0.2 | | 5x+4(5x-11)=181 | | 5+2((x-1)=12 | | t=19+24 | | 5-2(x-11)=12 | | 2.3+(v/3)=-2.5 | | -4x-3.5-9.5x=20.5 | | 25(x-36)=-114 | | 2n+16=4n | | 2+7+1+5x=18 | | 18.42=t=63 | | m2+2m-5=0 | | 2x+1=4(x+6) | | -60x=58 | | 3q−2q=7 | | x+5x=150000 | | 3(x-2)+4x=10(x-1) | | 2u+23=-5(u-6) | | 7(k-2=21 | | 6x-3x=8-4x | | 3x-20=5x÷3 | | .¾x=6 | | (1/5)5x+2=(1/3)4x-3 | | (1/5)(5x+2)=(1/3)(4x-3) | | -3(8p-11=-5p-5 | | 2x-3=11-5x= | | e=3(4)/6*2+11^2-4^3 | | -24p-99=-5p-5 | | y=6(2)^-3 | | x*9*15=270 | | 9x-81x+5x=0 | | y-y-10y-8y=0 |

Equations solver categories