1/4*x-5+9=1/2x

Simple and best practice solution for 1/4*x-5+9=1/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4*x-5+9=1/2x equation:



1/4x-5+9=1/2x
We move all terms to the left:
1/4x-5+9-(1/2x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/4x-(+1/2x)-5+9=0
We add all the numbers together, and all the variables
1/4x-(+1/2x)+4=0
We get rid of parentheses
1/4x-1/2x+4=0
We calculate fractions
2x/8x^2+(-4x)/8x^2+4=0
We multiply all the terms by the denominator
2x+(-4x)+4*8x^2=0
Wy multiply elements
32x^2+2x+(-4x)=0
We get rid of parentheses
32x^2+2x-4x=0
We add all the numbers together, and all the variables
32x^2-2x=0
a = 32; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·32·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*32}=\frac{0}{64} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*32}=\frac{4}{64} =1/16 $

See similar equations:

| b/7=-14 | | −3(x+7)3=-11 | | 3x²-^5x+6=2x²^-5x+6 | | b^2−6b−1=0 | | 21-x=12x= | | b2−6b−1=0 | | w/3=6w= | | 8v=48v= | | u-5=30u= | | 4x+10-2x-3=-5 | | 3x-15-10x=1 | | 6m+3=2m-4÷2 | | -3x+8=7x-12 | | 5h=–7+4h | | 2h/5-7=12h/5-2h+3 | | -7x+13x=29 | | 8x-22=3x+73 | | c/2-3=-0.5 | | 8+4n=9n+8 | | s/3+8.72=9.8 | | 3+4(2x-7)=15 | | 7(3x-5)=5(4x-7) | | 3(a+5)=11 | | 5x-15-2=28 | | -(-4)+(-7x)-8+2x=-4 | | 5x+4/3=6x-1 | | -7.5x+0.86=5.14 | | 9x+21=6x+63 | | 2q-74=2 | | 1.045^t=2 | | 2x*x-9x+6=0 | | x/3+3x-4=10 |

Equations solver categories