If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4k+2=1/2k-3
We move all terms to the left:
1/4k+2-(1/2k-3)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 2k-3)!=0We get rid of parentheses
k∈R
1/4k-1/2k+3+2=0
We calculate fractions
2k/8k^2+(-4k)/8k^2+3+2=0
We add all the numbers together, and all the variables
2k/8k^2+(-4k)/8k^2+5=0
We multiply all the terms by the denominator
2k+(-4k)+5*8k^2=0
Wy multiply elements
40k^2+2k+(-4k)=0
We get rid of parentheses
40k^2+2k-4k=0
We add all the numbers together, and all the variables
40k^2-2k=0
a = 40; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·40·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*40}=\frac{0}{80} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*40}=\frac{4}{80} =1/20 $
| -3x+21=42 | | 11x+11=5x-19 | | -2x+16=-4x+10 | | -2x-16=-34 | | 2x+1x=-2+9 | | -x+20=24 | | Tn=2n–1 | | -5x+19=-3x+11 | | 7x+84/3=7 | | 10x-2/4=7 | | (x/2)+10=5·4 | | 160/x=0 | | 1/4=x/7/6 | | 46=2x+5x-10 | | 1/x-1+1/x+1=4x+2/x2-1 | | 6x+126/6=9 | | 21/30/56/12=x/14/12 | | 1/x-1+1/x+1=4x+2/x^2-1 | | (x+5)=62 | | -2x-22=5(x+4) | | 0=8-2q | | (3x/4)-(2x/5)=3/4 | | (x/4)+8=15 | | 2x^2/4+x/6=3/2 | | 2x^2/4+x/6=3-2 | | 6x-8=10x+46x−8=10x+4 | | 4x-27/3=3 | | 3/10=x/5/3 | | /6x-8=10x+46x−8=10x+4 | | 8=10-p | | 3(2x-5)-27(3x-5)=0 | | (4x-4)/4-(2x-3)/3=0 |