1/4k=-0.75k+9

Simple and best practice solution for 1/4k=-0.75k+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4k=-0.75k+9 equation:



1/4k=-0.75k+9
We move all terms to the left:
1/4k-(-0.75k+9)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
We get rid of parentheses
1/4k+0.75k-9=0
We multiply all the terms by the denominator
(0.75k)*4k-9*4k+1=0
We add all the numbers together, and all the variables
(+0.75k)*4k-9*4k+1=0
We multiply parentheses
0k^2-9*4k+1=0
Wy multiply elements
0k^2-36k+1=0
We add all the numbers together, and all the variables
k^2-36k+1=0
a = 1; b = -36; c = +1;
Δ = b2-4ac
Δ = -362-4·1·1
Δ = 1292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1292}=\sqrt{4*323}=\sqrt{4}*\sqrt{323}=2\sqrt{323}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-2\sqrt{323}}{2*1}=\frac{36-2\sqrt{323}}{2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+2\sqrt{323}}{2*1}=\frac{36+2\sqrt{323}}{2} $

See similar equations:

| n(50-20)=30n | | -2(x+3)+(3x)=15 | | 47=6a-1 | | 4=8-g | | 17y^2+64y+60=0 | | |x+4|=2 | | 3=-(-4+v) | | a(a)+a=132 | | -3b+2=26 | | -4/f=-2 | | 6x-3(5x+2)=4(1+x) | | 1/4+2x=19/4-3x | | X+12y=3 | | t/3.2=5 | | 3=7+a/2 | | ×+12y=3 | | 6+7=x-5 | | 4k+13=-6{3k+4}7 | | 6y+6.9=7y | | 23=8w-7+2w | | 9=19-h | | 2.5−35x=−32x+48 | | p(100)=18,000(1-0.012)100 | | 7=-(a-10) | | √x2-12=x+6 | | p(1)=18,000(1-0.012)1 | | -3(x-1)=8(x-3)=6x+7-5x | | -6x-3=-69 | | -5v+-12v+3=20 | | 2/3xX=25000 | | n.n-1=20 | | 0.5m=4.5 |

Equations solver categories