1/4x+(x-7)=1+3x

Simple and best practice solution for 1/4x+(x-7)=1+3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x+(x-7)=1+3x equation:



1/4x+(x-7)=1+3x
We move all terms to the left:
1/4x+(x-7)-(1+3x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
1/4x+(x-7)-(3x+1)=0
We get rid of parentheses
1/4x+x-3x-7-1=0
We multiply all the terms by the denominator
x*4x-3x*4x-7*4x-1*4x+1=0
Wy multiply elements
4x^2-12x^2-28x-4x+1=0
We add all the numbers together, and all the variables
-8x^2-32x+1=0
a = -8; b = -32; c = +1;
Δ = b2-4ac
Δ = -322-4·(-8)·1
Δ = 1056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1056}=\sqrt{16*66}=\sqrt{16}*\sqrt{66}=4\sqrt{66}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{66}}{2*-8}=\frac{32-4\sqrt{66}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{66}}{2*-8}=\frac{32+4\sqrt{66}}{-16} $

See similar equations:

| 3(2m-4)=4(m-2) | | 5(4=2y)2(5=6y) | | g+3/4=1 | | 7/6n+5=-9 | | 14-3x=-40 | | 1/2(6a-28)=6 | | (-5x-10)-3x=2 | | 3y+11=5y+4 | | 90+90+64+x=360 | | 2(-2w-4)=48 | | 11/9x=1 | | 88+x=3 | | 8/7t-7=-23 | | 6/5x+30=60 | | 6=z/24 | | 5(r)=3.14r^2 | | 3b-21=-30 | | 4.11-6.4x+1.11=22.5 | | 70-(x-10)=2(25+x) | | 5(a-2)=55 | | 0.07x=1140 | | 19b=104 | | 30n+60=90 | | (2x+15)+90=180 | | 3z-7;z=3 | | c+0.75=4 | | 0.6(x-3)=1.2 | | q+33=88 | | (2n-4)/4+5=n | | 5c-4=2c+5 | | 6m+3=4m-5 | | -9x-7-4x-4=15 |

Equations solver categories