1/4x+1/10=-3/20x-710

Simple and best practice solution for 1/4x+1/10=-3/20x-710 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x+1/10=-3/20x-710 equation:



1/4x+1/10=-3/20x-710
We move all terms to the left:
1/4x+1/10-(-3/20x-710)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 20x-710)!=0
x∈R
We get rid of parentheses
1/4x+3/20x+710+1/10=0
We calculate fractions
160x^2/800x^2+200x/800x^2+120x/800x^2+710=0
We multiply all the terms by the denominator
160x^2+200x+120x+710*800x^2=0
We add all the numbers together, and all the variables
160x^2+320x+710*800x^2=0
Wy multiply elements
160x^2+568000x^2+320x=0
We add all the numbers together, and all the variables
568160x^2+320x=0
a = 568160; b = 320; c = 0;
Δ = b2-4ac
Δ = 3202-4·568160·0
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{102400}=320$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-320}{2*568160}=\frac{-640}{1136320} =-2/3551 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+320}{2*568160}=\frac{0}{1136320} =0 $

See similar equations:

| 3n+3+2n+7=180 | | 3/2x-16=68 | | W=3/2^t | | 20x=17x+12 | | Y=3^t2 | | y=17.000(1.03)^10 | | 30=2.5x+50 | | 30=-2x+5 | | 30=-10x+50 | | 55x=115 | | 3^(2x-1)=72 | | 4x+2(2x-3)=4(2x-2)+1 | | (85x-0.5x^2)-(45x+300)=50 | | 3/4=x+1/3 | | -3=b/3+-4 | | -4=-7+3j | | C=2x3.14x13 | | 5^3(4x-5)=4x-1^3 | | 3^5(4x-5)=4x-3^1 | | -532=-10x^2+15x-12 | | 5^2(3x-4)=-4 | | 5.9x+6=3.9x+19.2 | | X^2+y^2=28^2 | | a=2(3.14)(5)10 | | (100000/x)*1000=0 | | 8x/11=20 | | 5w-15w=30 | | 203=82-y | | .5(2h-10)=-(3h-7) | | -21+-3r=-57 | | 7x(10+5)=(7+10)+(7x5) | | 6x-6=7x+2. |

Equations solver categories