1/4x+12=1/6x+2

Simple and best practice solution for 1/4x+12=1/6x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x+12=1/6x+2 equation:



1/4x+12=1/6x+2
We move all terms to the left:
1/4x+12-(1/6x+2)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 6x+2)!=0
x∈R
We get rid of parentheses
1/4x-1/6x-2+12=0
We calculate fractions
6x/24x^2+(-4x)/24x^2-2+12=0
We add all the numbers together, and all the variables
6x/24x^2+(-4x)/24x^2+10=0
We multiply all the terms by the denominator
6x+(-4x)+10*24x^2=0
Wy multiply elements
240x^2+6x+(-4x)=0
We get rid of parentheses
240x^2+6x-4x=0
We add all the numbers together, and all the variables
240x^2+2x=0
a = 240; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·240·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*240}=\frac{-4}{480} =-1/120 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*240}=\frac{0}{480} =0 $

See similar equations:

| 1/6x+1/12x+1/7x+1/2x+9=x | | 100=80(1.5n) | | 4(2x-6)*0+x+x=x+3-7 | | 4(-2x)=100 | | -X+3y=100 | | (4x+1)=47 | | 2,9+3x–8,2=12,7 | | (8×+2y=67) | | 26=3.14r^2 | | 6x-1-31=-6x+3-9 | | 2x+3+x=147 | | (-7/6)v=-28 | | 7x^2-129=3007 | | 3x-5x=-23 | | –5x–18.8=43+13(x+6) | | (x)2-x=12 | | 37.6=–0.2(x+95) | | 6(3x-2+x)=180 | | 8÷3x+1÷3x=4x+20÷3+7÷3x | | 2y+y+42=180 | | 7/3x-1=-7/4x+5/4 | | -24-5y=-34 | | 1.25(7)+.25=c | | −21​=83​y | | (k+10)^2-(2k-9)^2=0 | | -3k^2+56k+181=0 | | 7=v−19 | | 9x–12=48 | | 16v=10(1/7+10/7)–1 | | 16v=10((1+10)/7)-1 | | 2z=8) | | |10x–15|=5x–40 |

Equations solver categories