If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4x+5/2x=4-1/4x
We move all terms to the left:
1/4x+5/2x-(4-1/4x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
1/4x+5/2x-(-1/4x+4)=0
We get rid of parentheses
1/4x+5/2x+1/4x-4=0
We calculate fractions
(2x+1)/8x^2+20x/8x^2-4=0
We multiply all the terms by the denominator
(2x+1)+20x-4*8x^2=0
We add all the numbers together, and all the variables
20x+(2x+1)-4*8x^2=0
Wy multiply elements
-32x^2+20x+(2x+1)=0
We get rid of parentheses
-32x^2+20x+2x+1=0
We add all the numbers together, and all the variables
-32x^2+22x+1=0
a = -32; b = 22; c = +1;
Δ = b2-4ac
Δ = 222-4·(-32)·1
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-6\sqrt{17}}{2*-32}=\frac{-22-6\sqrt{17}}{-64} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+6\sqrt{17}}{2*-32}=\frac{-22+6\sqrt{17}}{-64} $
| a^2+100=196 | | 3.2+5.7=-2.5x | | 2m=-42 | | 5z2–8z+6=0 | | -3x=-32 | | 5.25+6=74.25x= | | y2–6y–2=0 | | 1/2(x-12)=21+5x | | 5+2x=4(-x+5)-27 | | −4=c-9 | | 3x-5+7x+9+x=180 | | 90+5x+4+2x+30=180 | | 5p-8=-33 | | 62.125x=186.38 | | x+8+6x+4+5x=180 | | -3(2x-5)-6=10-2x-13 | | 90+3x+38+4x+10=180 | | x2-12x=45 | | 5x-6+2x+2+x=180 | | 3x−4/x+3= | | 6=6+3y | | -5x-18=10x-1 | | 11^-x-10=13^-4x | | F(x)=16-x^2 | | 6x+2-2x=x+23x= | | 3x+2+5x=x+44x= | | 3(×+2)+4(2x+1)=6x+20 | | 2x+11=3x-16 | | 2q2–4q+7=0 | | 4x-14=2x+16 | | 6r2–r+6=0 | | 5s2+7s+5=0 |