If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4x+5/3x-4=2-1/4x
We move all terms to the left:
1/4x+5/3x-4-(2-1/4x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
1/4x+5/3x-(-1/4x+2)-4=0
We get rid of parentheses
1/4x+5/3x+1/4x-2-4=0
We calculate fractions
(3x+1)/12x^2+20x/12x^2-2-4=0
We add all the numbers together, and all the variables
(3x+1)/12x^2+20x/12x^2-6=0
We multiply all the terms by the denominator
(3x+1)+20x-6*12x^2=0
We add all the numbers together, and all the variables
20x+(3x+1)-6*12x^2=0
Wy multiply elements
-72x^2+20x+(3x+1)=0
We get rid of parentheses
-72x^2+20x+3x+1=0
We add all the numbers together, and all the variables
-72x^2+23x+1=0
a = -72; b = 23; c = +1;
Δ = b2-4ac
Δ = 232-4·(-72)·1
Δ = 817
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{817}}{2*-72}=\frac{-23-\sqrt{817}}{-144} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{817}}{2*-72}=\frac{-23+\sqrt{817}}{-144} $
| 2k=-156 | | 2500+400x=4100+200x | | 30z-12,000=980 | | -7k-6=8-9k | | 4x^2-109=35 | | r/5+29=-14 | | 6^{-4n}=12 | | -7x-15=57 | | 12x+8-6=18+-2 | | 2(3c+8)=4c-36 | | t=-2(-7) | | 6^-4n=12 | | 8x/8=44/8 | | (7−3r)(–5)= | | 4f3=62 | | K=-8.0x10^-6 | | 5.7÷d=10 | | 120+5x-6+4x+14+7x+8x-8+8x+120=360 | | 120+5x-6+4x+14+7x+8x-8+8x+120=1 | | 120+5x-6+4x+14+7x+8x-8+8x+120=180 | | 4(f-3)=62 | | 4f+3=62 | | 3(w-5.15)—1.9=8.17 | | 2x+18+7x+13=180 | | 4f=3=62 | | 2x+18+7x+13+50=180 | | -3x+8=-30 | | 7x+2+3x+4=180 | | -m=-2m-4 | | 7.24=2(t-4)+1.24 | | 7x+2+3x+4+114=180 | | f/2-5=-4 |