1/4x+7/6=4/3x

Simple and best practice solution for 1/4x+7/6=4/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x+7/6=4/3x equation:



1/4x+7/6=4/3x
We move all terms to the left:
1/4x+7/6-(4/3x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/4x-(+4/3x)+7/6=0
We get rid of parentheses
1/4x-4/3x+7/6=0
We calculate fractions
252x^2/432x^2+108x/432x^2+(-576x)/432x^2=0
We multiply all the terms by the denominator
252x^2+108x+(-576x)=0
We get rid of parentheses
252x^2+108x-576x=0
We add all the numbers together, and all the variables
252x^2-468x=0
a = 252; b = -468; c = 0;
Δ = b2-4ac
Δ = -4682-4·252·0
Δ = 219024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{219024}=468$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-468)-468}{2*252}=\frac{0}{504} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-468)+468}{2*252}=\frac{936}{504} =1+6/7 $

See similar equations:

| √16x/25x=5 | | (1/(x^2))+(5/x)+6=0 | | -16x•x+125x+2=246 | | √16/25x=5 | | -1/6x=-1/3 | | 0.0537/(0.0463*((a-0.537)/10))=25 | | -5/7d=2/5 | | x+0.05x=63 | | a-0.537=10 | | 6x+8=33x-38 | | 4c+10=3c+24 | | 36p-26=10 | | -6x+36/x=12/1 | | 4y-17=3y+3 | | 8*y+5*y=0 | | -6x+36/x=12/0 | | 7/3+2x=5/6-3x | | 8a+12=11a | | 12n^2=-12-n | | -6x+36/x=12 | | 10p=p+41 | | 3z/10-5=3 | | 31c+46=35c+42 | | 3z/7-4=4 | | 20-6+4x=2-2x | | 19x^2+17x-90=0 | | 4z/9-9=-6 | | 17+4x+2=1-5x | | F=1.8(k-237.15)+32 | | b+20=2b-18 | | 16b+5=12b+17 | | 6^(x-1)=10 |

Equations solver categories