1/4x-2=-+5/12x

Simple and best practice solution for 1/4x-2=-+5/12x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-2=-+5/12x equation:



1/4x-2=-+5/12x
We move all terms to the left:
1/4x-2-(-+5/12x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 12x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/4x-(+5/12x)-2=0
We get rid of parentheses
1/4x-5/12x-2=0
We calculate fractions
12x/48x^2+(-20x)/48x^2-2=0
We multiply all the terms by the denominator
12x+(-20x)-2*48x^2=0
Wy multiply elements
-96x^2+12x+(-20x)=0
We get rid of parentheses
-96x^2+12x-20x=0
We add all the numbers together, and all the variables
-96x^2-8x=0
a = -96; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·(-96)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*-96}=\frac{0}{-192} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*-96}=\frac{16}{-192} =-1/12 $

See similar equations:

| 4(p-7)-5p=-22 | | 2x=-4x-12 | | -9u+5=-7(u+1) | | -27=-2x-7x-9 | | 87/x=3 | | 40x+7+16x-11=38 | | 7p-9=40.5 | | 2-16t=6(-3t+20 | | 18=3(c=3)+3 | | (180-(9x-325)-(8x-218))+x+19=180 | | 3+g=1÷4 | | 25-6n=2n(12n-1) | | 4(2x+1)=-18 | | 76/x=4 | | 180-9x-325–8x-218+x+19=180 | | 4(-4)+2y=-12 | | 2x+4+27=180 | | 7x+10+6x+53=180 | | 35+v=-1 | | 3n-2n+5=10 | | 5x-84=1x | | -10=v/25=-1 | | 9+r=17 | | y+90-38=180 | | 17+9c=-10 | | 9+7x−3−4x=27 | | 4x-54=1x | | 12h-7h-2h=3 | | -7n+2n=3n-7n=8 | | 14k+882=378 | | 3(4x-7)-3x+6=12 | | 11m+682=253 |

Equations solver categories