1/4x-3=1/6x+5

Simple and best practice solution for 1/4x-3=1/6x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-3=1/6x+5 equation:



1/4x-3=1/6x+5
We move all terms to the left:
1/4x-3-(1/6x+5)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 6x+5)!=0
x∈R
We get rid of parentheses
1/4x-1/6x-5-3=0
We calculate fractions
6x/24x^2+(-4x)/24x^2-5-3=0
We add all the numbers together, and all the variables
6x/24x^2+(-4x)/24x^2-8=0
We multiply all the terms by the denominator
6x+(-4x)-8*24x^2=0
Wy multiply elements
-192x^2+6x+(-4x)=0
We get rid of parentheses
-192x^2+6x-4x=0
We add all the numbers together, and all the variables
-192x^2+2x=0
a = -192; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-192)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-192}=\frac{-4}{-384} =1/96 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-192}=\frac{0}{-384} =0 $

See similar equations:

| -10.5+m*11.75=-2.748 | | 5/6+x=35 | | -5/1/6=2/1/3+p | | 6x+9/3=-4 | | 5/6+35=x | | -7+6k=-7(1+8k) | | 6(x-2)=8(x+8) | | X-6x+7=3x-8x+2 | | 6=u/2+4 | | 6x+9/3=4 | | 4/5x+3/5x+9=-25 | | 9+x=27-5x | | -6+-3s=-12 | | 7(z-4)+7=5z+7 | | 18+5yy=-4 | | (9)/(x+9)=(2)/(3) | | -(4x-6)+9=7x-(1-6x) | | 5/2x=19/4 | | 28.5+x=37.8 | | 5+3x2=X | | F(x)=4+x/79 | | .15*m+14=14.60 | | 9/x+9=2/3 | | 4(x-6)=12/3 | | 29-xx=0.5 | | 4x11=-66-7x | | -3(m+4)+5=-6 | | -7-7(2b-4)=5(-2b+6) | | 2x+4=6(x+8) | | 2x-(5x+3)=6x-3(3x+6)+15 | | |1-|3x+2||=7 | | 12x+3=3x-9 |

Equations solver categories