1/4x-5/2=2/3x+1

Simple and best practice solution for 1/4x-5/2=2/3x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-5/2=2/3x+1 equation:



1/4x-5/2=2/3x+1
We move all terms to the left:
1/4x-5/2-(2/3x+1)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 3x+1)!=0
x∈R
We get rid of parentheses
1/4x-2/3x-1-5/2=0
We calculate fractions
(-180x^2)/48x^2+12x/48x^2+(-32x)/48x^2-1=0
We multiply all the terms by the denominator
(-180x^2)+12x+(-32x)-1*48x^2=0
Wy multiply elements
(-180x^2)-48x^2+12x+(-32x)=0
We get rid of parentheses
-180x^2-48x^2+12x-32x=0
We add all the numbers together, and all the variables
-228x^2-20x=0
a = -228; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·(-228)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*-228}=\frac{0}{-456} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*-228}=\frac{40}{-456} =-5/57 $

See similar equations:

| 6x-6x+5=0 | | 8=r/5=r | | 3n-7=2n+1 | | 7x+3=9x−13 | | 15=4x+6-21-48 | | |5y-15|=5 | | 7y-8=6y=1 | | x/5+1=x-7 | | 6y-2=3y | | 10+a=-5+4a | | 5x+16=8x+4 | | 5x−9=5(x−9) | | -6x+27-3x=81 | | -×+3y=1 | | 2(x+3)=5+27 | | 1x+6=3x+4 | | (33b-7)-8(4b+1)=-6 | | 0x+6=3x+4 | | x+40+2x-5+3(-17)=180 | | 10d–8d=16 | | -5+9x=40 | | 15z–6z=18 | | 100+55x=80+55x | | -4x-24=48 | | 7+2b=-1 | | 100-35x=50-3x | | 2=3.50x=5+3.25x | | 2+3k=20 | | x+6x=21+15+13x | | 3x+4=x+84 | | m-1.5=5/4 | | (6x+1)(6x-1)(12x-1)(3x+1)=-18x2 |

Equations solver categories