If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4x^2=8
We move all terms to the left:
1/4x^2-(8)=0
Domain of the equation: 4x^2!=0We multiply all the terms by the denominator
x^2!=0/4
x^2!=√0
x!=0
x∈R
-8*4x^2+1=0
Wy multiply elements
-32x^2+1=0
a = -32; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-32)·1
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-32}=\frac{0-8\sqrt{2}}{-64} =-\frac{8\sqrt{2}}{-64} =-\frac{\sqrt{2}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-32}=\frac{0+8\sqrt{2}}{-64} =\frac{8\sqrt{2}}{-64} =\frac{\sqrt{2}}{-8} $
| 3+-3c=-12 | | (2x-9)^2-(1)=0 | | 2+3k=35 | | 2r−2r+4r+r+2r=14 | | -26=d+8 | | 18=x(113.4)x=95.4 | | 0.034(x)-1.72=-6.82 | | 7/8x=160 | | 3z-85+2z=180 | | 3x^-2x=70 | | 3b=312 | | 18=x(113.4)x=9.4 | | 25x=1,000 | | 4h+6=30* | | 9s-39+9s-87=180 | | 5x-18+3x+10=78 | | 40=x+0.30(x) | | 5x-5-8=22 | | (2x-9)^2=1 | | 4b-5=3b | | 320x=960 | | 5.3c=3 | | 2x-6(x+4)=32 | | 1-2k+5k=-4+3k | | 5(4x-1)=2+7x | | 40=0.60x | | p-6-5=-5 | | 6b=50=86 | | X=85+-2y | | z−94/2=2 | | 3z+14=6z-94 | | –14+2b=–18 |