1/4x=1/7x+33

Simple and best practice solution for 1/4x=1/7x+33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x=1/7x+33 equation:



1/4x=1/7x+33
We move all terms to the left:
1/4x-(1/7x+33)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 7x+33)!=0
x∈R
We get rid of parentheses
1/4x-1/7x-33=0
We calculate fractions
7x/28x^2+(-4x)/28x^2-33=0
We multiply all the terms by the denominator
7x+(-4x)-33*28x^2=0
Wy multiply elements
-924x^2+7x+(-4x)=0
We get rid of parentheses
-924x^2+7x-4x=0
We add all the numbers together, and all the variables
-924x^2+3x=0
a = -924; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-924)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-924}=\frac{-6}{-1848} =1/308 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-924}=\frac{0}{-1848} =0 $

See similar equations:

| 7x+10+3x-6=33 | | 3−z2=6 | | 8*(2x-1)-3*(2x-1)=x+4 | | X3+2x=25 | | 4-3x=5x-2*(3-x) | | x+28=85 | | x=28=85 | | x-3(1+x)=5x | | 5+x+4x-(100)=0 | | 5+x+4x=100 | | 3x+99+72=180 | | 15x+43+92=180 | | 16x+43+92=180 | | 4x^2-0.8x+0.04=0 | | 2a(a-1)=2a²-2a | | 5x^2x=180 | | 6-x÷6=5 | | 3x+(x+1)=4*(x+1) | | 305=s+35 | | 9(x+2)-3(2x-3)=12 | | Y=1-3/x^2 | | (2x-1/5)×4,5=9-1,8x | | 16x-16=3*(2+x) | | 2x+5+3x+3=180 | | 1/2-5x+3x=6,3 | | 4*(3+x)-3=2*(2-x) | | 4k−7=9 | | 3(2x+1)-2(2x+1)=11 | | 7(7c+1)-4c=12(3c-2) | | 3(7x+28)=105 | | 4x/7-10=30 | | 8x-5x-5=7 |

Equations solver categories