If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4x=20x=40
We move all terms to the left:
1/4x-(20x)=0
Domain of the equation: 4x!=0We add all the numbers together, and all the variables
x!=0/4
x!=0
x∈R
-20x+1/4x=0
We multiply all the terms by the denominator
-20x*4x+1=0
Wy multiply elements
-80x^2+1=0
a = -80; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-80)·1
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*-80}=\frac{0-8\sqrt{5}}{-160} =-\frac{8\sqrt{5}}{-160} =-\frac{\sqrt{5}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*-80}=\frac{0+8\sqrt{5}}{-160} =\frac{8\sqrt{5}}{-160} =\frac{\sqrt{5}}{-20} $
| w+7/3=0 | | -(n-7)=0 | | 25x-10=100 | | 25x10=100 | | u+149/16=24 | | -6t^2+24t=H | | k-865/9=14 | | -4x+2=-14;x=4 | | 28s+54=362 | | 509=49+23u | | 8x+17+7x-2=180 | | 13x-5=600 | | C(9/5)+32=c | | y-785/27=5 | | 18f+19=901 | | g/13+246=261 | | 8x+8x=15x+1 | | m-548/8=31 | | 593=9u-154 | | n-617/23=13 | | 8x-27=5x-15 | | 7−6j=7−j | | x-12=-28 | | 11=1/3(10z+15) | | 6s=5s+8 | | -(12x+8)=6(3-2x) | | -17=v/11 | | 3x-8+4=2x=8+x | | 41+x=19 | | 3x+x+6=12 | | 5/3x+3/4=2x+5/3x | | 7x+12=38 |