1/4y-16=3/8y+64

Simple and best practice solution for 1/4y-16=3/8y+64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4y-16=3/8y+64 equation:



1/4y-16=3/8y+64
We move all terms to the left:
1/4y-16-(3/8y+64)=0
Domain of the equation: 4y!=0
y!=0/4
y!=0
y∈R
Domain of the equation: 8y+64)!=0
y∈R
We get rid of parentheses
1/4y-3/8y-64-16=0
We calculate fractions
8y/32y^2+(-12y)/32y^2-64-16=0
We add all the numbers together, and all the variables
8y/32y^2+(-12y)/32y^2-80=0
We multiply all the terms by the denominator
8y+(-12y)-80*32y^2=0
Wy multiply elements
-2560y^2+8y+(-12y)=0
We get rid of parentheses
-2560y^2+8y-12y=0
We add all the numbers together, and all the variables
-2560y^2-4y=0
a = -2560; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-2560)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-2560}=\frac{0}{-5120} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-2560}=\frac{8}{-5120} =-1/640 $

See similar equations:

| f-94=-33 | | 7(x-5)=4(x-10) | | C-9=5c-3 | | 2x(x+90)=180 | | y+10=-13 | | 2+x=(-2) | | 3/4c-7=8 | | 3m-14=-3 | | i=10(45)+1315/6 | | 9+x-3x=27 | | x=2/0.4 | | r+22=63 | | x+11=5x+4 | | 2y+3y-10=2y+20 | | 5u+8=40-u | | -6n-4=-4-6n | | 2j+7=43 | | −8p+4=12-7p | | t-41=18 | | 144=8n-16 | | 5x+2(1-7x)=-34 | | -28=-11+n | | 0.4x+1=3 | | 9v-4v=-10 | | 24-(5-r)=13=2r | | -7x-8=-10x+10 | | 1/4(12x+-20)=-70 | | 2(5p-4)=3p-7 | | 4x^2-24x-124=0 | | 2/3g+6=-11 | | 6-6(3x–2)=-72 | | 6(2x+1)-6x+6=30 |

Equations solver categories