1/4z+6=2/3z+28

Simple and best practice solution for 1/4z+6=2/3z+28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4z+6=2/3z+28 equation:



1/4z+6=2/3z+28
We move all terms to the left:
1/4z+6-(2/3z+28)=0
Domain of the equation: 4z!=0
z!=0/4
z!=0
z∈R
Domain of the equation: 3z+28)!=0
z∈R
We get rid of parentheses
1/4z-2/3z-28+6=0
We calculate fractions
3z/12z^2+(-8z)/12z^2-28+6=0
We add all the numbers together, and all the variables
3z/12z^2+(-8z)/12z^2-22=0
We multiply all the terms by the denominator
3z+(-8z)-22*12z^2=0
Wy multiply elements
-264z^2+3z+(-8z)=0
We get rid of parentheses
-264z^2+3z-8z=0
We add all the numbers together, and all the variables
-264z^2-5z=0
a = -264; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·(-264)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*-264}=\frac{0}{-528} =0 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*-264}=\frac{10}{-528} =-5/264 $

See similar equations:

| -3(r+5)=-6 | | 6x+12-8x-9+10=0 | | -s-6/4=1 | | w-6+ 10= 6 | | 6m-8=+9m-1 | | x/4+6=70 | | 12+u/4=15 | | ​6/​​k​​=​3​/​4​​ | | 3(x-5)=2(x+4)+2 | | 9-(2-54)=6+2y-(5+y) | | 8b+5b=-91 | | 93=-10a-7 | | 6+5x=-4+6x | | -8=4(p+7) | | 3(x-5)=2(+4)+2 | | -6|x-9|=4 | | 16-d/2=20 | | 9d+8d=-85 | | 7+z/2=6 | | (1/5)x-3=-3(1/3) | | 8y-3y=55 | | 1/5k-3=31/3 | | y/3+3=-12 | | -9(c-2)=81 | | -9u-7=-70 | | 2(x-1)^2+9=41 | | -55=z+10z | | 6+d/2=7 | | 2g–g=14 | | y/8-5=7 | | 8x-7=+6× | | 3(x+2)+4x=6(x-2) |

Equations solver categories