If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5(10x+45)-17=-1/4(28x-8)
We move all terms to the left:
1/5(10x+45)-17-(-1/4(28x-8))=0
Domain of the equation: 5(10x+45)!=0
x∈R
Domain of the equation: 4(28x-8))!=0We calculate fractions
x∈R
(4x2/(5(10x+45)*4(28x-8)))+(-(-5x1)/(5(10x+45)*4(28x-8)))-17=0
We calculate terms in parentheses: +(4x2/(5(10x+45)*4(28x-8))), so:
4x2/(5(10x+45)*4(28x-8))
We multiply all the terms by the denominator
4x2
We add all the numbers together, and all the variables
4x^2
Back to the equation:
+(4x^2)
We calculate terms in parentheses: +(-(-5x1)/(5(10x+45)*4(28x-8))), so:a = 4; b = 5; c = -17;
-(-5x1)/(5(10x+45)*4(28x-8))
We add all the numbers together, and all the variables
-(-5x)/(5(10x+45)*4(28x-8))
We multiply all the terms by the denominator
-(-5x)
We get rid of parentheses
5x
Back to the equation:
+(5x)
Δ = b2-4ac
Δ = 52-4·4·(-17)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{33}}{2*4}=\frac{-5-3\sqrt{33}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{33}}{2*4}=\frac{-5+3\sqrt{33}}{8} $
| 3h=7(2/7+(-3/7h)+(-10) | | -1/5=-1/2u+2/3 | | 5-5t=-6t+3 | | 6n+6-6=4n+12-6 | | 3h=7(2/7+(-3/7)+(-10) | | 135+23x+22x=180 | | x=-1+3/5 | | 4z=20 | | 8x-11=5x+2x+6 | | 0=8.22w-3.152 | | 3/2 +b=7/4 | | 8+6x=x+4x+2 | | 2/3c-8=56.60 | | 1.5x0.75=x | | 4x(5-3)=(4x)-(4x) | | 22n+6n=-72 | | 100y-(((2y-2000)))*25=200000 | | (17*x)*3=0 | | 105=5+5(8+3n) | | 9x4=10x+4 | | -2(5+y=9) | | 6x+4+90+50=180 | | 71-1x=-11x=131 | | x4−4x3−x2+16x−12=0 | | 8.8x-16.6=36.2 | | 12x-8=-44 | | -10-3c=10-c | | 31x-4+29=180 | | 15+(6+x=0 | | 2y-(6-2y)=4 | | (y-2000)*100/25=(y+y-2000) | | (y*200)*2=0 |