If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5(2x-10)=-1/4(-4x+1)
We move all terms to the left:
1/5(2x-10)-(-1/4(-4x+1))=0
Domain of the equation: 5(2x-10)!=0
x∈R
Domain of the equation: 4(-4x+1))!=0We calculate fractions
x∈R
(4x(-)/(5(2x-10)*4(-4x+1)))+(-(-5x2)/(5(2x-10)*4(-4x+1)))=0
We calculate terms in parentheses: +(4x(-)/(5(2x-10)*4(-4x+1))), so:
4x(-)/(5(2x-10)*4(-4x+1))
We add all the numbers together, and all the variables
4x0/(5(2x-10)*4(-4x+1))
We multiply all the terms by the denominator
4x0
We add all the numbers together, and all the variables
4x
Back to the equation:
+(4x)
We calculate terms in parentheses: +(-(-5x2)/(5(2x-10)*4(-4x+1))), so:determiningTheFunctionDomain 5x^2+4x=0
-(-5x2)/(5(2x-10)*4(-4x+1))
We add all the numbers together, and all the variables
-(-5x^2)/(5(2x-10)*4(-4x+1))
We multiply all the terms by the denominator
-(-5x^2)
We get rid of parentheses
5x^2
Back to the equation:
+(5x^2)
a = 5; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·5·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*5}=\frac{-8}{10} =-4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*5}=\frac{0}{10} =0 $
| F(x-8)=7x^2-5x-1 | | 20=13y-9y | | 4x+13=12x-13 | | z^2+3=3^2 | | 5+6x=-3x+11 | | 12=15(z)-15(1/5) | | 4x+24=20x-60 | | 10m^2-25m+10=0 | | 1x-61=4 | | 18-r=-7(-8-6r)-5r | | -12x+144=72 | | 5x-15=2x+16 | | -16+4=-(x+9) | | 12/z=56 | | t+35=615 | | T(h)=76 | | -11j-6=3j=-30 | | 7x+3(x-2)=12 | | (4/7)(x+(1/3))=(1/7)(x-(3/5)) | | r^2+6r+17=8 | | 2=u/5+3 | | -5x+2=10-9- | | 7x+5(x-2)=12 | | 1x=4(7-x) | | 6x+7=7x-6 | | 5-x=1/4(3-x) | | 2(a-)-(3a+1)=0 | | ½(4x–5)=8x+10+2x | | -6v(v+4)=-8v-20 | | 26x=-806 | | x13+4x=22 | | 6x+7=7x-9 |