1/5+m(2/5)=1

Simple and best practice solution for 1/5+m(2/5)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5+m(2/5)=1 equation:



1/5+m(2/5)=1
We move all terms to the left:
1/5+m(2/5)-(1)=0
determiningTheFunctionDomain m(2/5)-1+1/5=0
We add all the numbers together, and all the variables
m(+2/5)-1+1/5=0
We multiply parentheses
2m^2-1+1/5=0
We multiply all the terms by the denominator
2m^2*5+1-1*5=0
We add all the numbers together, and all the variables
2m^2*5-4=0
Wy multiply elements
10m^2-4=0
a = 10; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·10·(-4)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*10}=\frac{0-4\sqrt{10}}{20} =-\frac{4\sqrt{10}}{20} =-\frac{\sqrt{10}}{5} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*10}=\frac{0+4\sqrt{10}}{20} =\frac{4\sqrt{10}}{20} =\frac{\sqrt{10}}{5} $

See similar equations:

| 17-2x=12-2x | | -37-2n=5(1+8n) | | 2y(y+1)-2=4+2y-y | | 6m-1m=2 | | 14-2x=7x+14 | | 13x=9(1+x) | | 14x+20=2x+10 | | x-(0.1*x)=22000000 | | 13x=9(+-x) | | -5x+4=-5x-6 | | K+47k=(-48) | | X+12-6x=-2 | | 3n+5/2=5n+3/3 | | 18t-13t-4t+8t+2=29 | | 39z+7z-19z+4z-30z-1=43 | | 56x=52 | | 44s-27s-37s=(-20) | | 80=-x-27 | | (-4c)-(-15c)+(-10c)+(-2c)-(-9c)=(-16) | | 8(-1+m)+3=2(m-5/1.5) | | 8(-1+m)+3=2(m-5/1/2) | | 2b+62=132-8b | | 20p-p-5p-13p-1=15 | | (x−4)2−44=100 | | 20s+(-10s)+(-11s)+(-11s)-14s-9=17 | | s-63.12=3 | | n+7=6n+5 | | 3x+2-13x=70 | | 3+(z-7)=1z+11 | | 5z-z+3z+3z-10=20 | | (6x+42)=(18x12) | | -x/8=1.6 |

Equations solver categories