1/5c=18;c=90

Simple and best practice solution for 1/5c=18;c=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5c=18;c=90 equation:



1/5c=18c=90
We move all terms to the left:
1/5c-(18c)=0
Domain of the equation: 5c!=0
c!=0/5
c!=0
c∈R
We add all the numbers together, and all the variables
-18c+1/5c=0
We multiply all the terms by the denominator
-18c*5c+1=0
Wy multiply elements
-90c^2+1=0
a = -90; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-90)·1
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*-90}=\frac{0-6\sqrt{10}}{-180} =-\frac{6\sqrt{10}}{-180} =-\frac{\sqrt{10}}{-30} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*-90}=\frac{0+6\sqrt{10}}{-180} =\frac{6\sqrt{10}}{-180} =\frac{\sqrt{10}}{-30} $

See similar equations:

| 2/3h^2-24=0 | | 5(3x+6)=-37+22 | | C=37.17x+0.50 | | -856=4g | | a/3=a-6/8 | | X+16=30;x=3 | | b/9=b-8/5 | | 10g=18 | | 17=3r−–5 | | s+-162=-681 | | 3x(x+15)=131 | | x/24=x+13/3x-21 | | 3/8x(2/3x)+3=x | | h(2/3h)=24 | | 7-(2x-(3x-5)-1)=0 | | x/24=3x-21/x+13 | | 3^3=3^4x+2. | | 0=-16t^2+64t-6 | | 2x+20=(4/7x) | | 11g+25=-8 | | x+(x+8)=100 | | 53=j-17 | | -3n+7n-6=6 | | n+41=65 | | -3(3x–12)=-9 | | 32/36=(x+3/x+6) | | 15x+15x=90+90 | | V(16x+17)=2(x+2) | | x+1-4x=19 | | 96=6t | | 4j−2=1 | | 20/v=5.2/6.5 |

Equations solver categories