If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5h-3(2/5h-2)=2/5h-8
We move all terms to the left:
1/5h-3(2/5h-2)-(2/5h-8)=0
Domain of the equation: 5h!=0
h!=0/5
h!=0
h∈R
Domain of the equation: 5h-2)!=0
h∈R
Domain of the equation: 5h-8)!=0We multiply parentheses
h∈R
1/5h-6h-(2/5h-8)+6=0
We get rid of parentheses
1/5h-6h-2/5h+8+6=0
We multiply all the terms by the denominator
-6h*5h+8*5h+6*5h+1-2=0
We add all the numbers together, and all the variables
-6h*5h+8*5h+6*5h-1=0
Wy multiply elements
-30h^2+40h+30h-1=0
We add all the numbers together, and all the variables
-30h^2+70h-1=0
a = -30; b = 70; c = -1;
Δ = b2-4ac
Δ = 702-4·(-30)·(-1)
Δ = 4780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4780}=\sqrt{4*1195}=\sqrt{4}*\sqrt{1195}=2\sqrt{1195}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-2\sqrt{1195}}{2*-30}=\frac{-70-2\sqrt{1195}}{-60} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+2\sqrt{1195}}{2*-30}=\frac{-70+2\sqrt{1195}}{-60} $
| m/3+2=4/3 | | x-2/3=11/18 | | -7(2x-3)=14x+2 | | 3n-2=13n+18 | | 180-8(8x)=160-6x | | 8b=7.2 | | 4/3w-12=13 | | x+3/11=-19/11 | | 8x-10+2=1+4x+3 | | -3+z=6z+2 | | 2.9z+4.3z+17.9=67.6 | | −4.8f+6.4=−8.48 | | 14+3n=8n-3(n-4 | | 5(2)/x=15 | | 3x+18=2x+48 | | |-4a+3|=-43 | | (x+8)^2=16 | | x=(x-35) | | 6z=49-2 | | 5-(n-4)=3*(n+2) | | -5x-4=-11 | | -3(x+2)^2=-18 | | 150x-100x+48750=51250-200x | | 5(2x-10)÷2+14=19 | | Y=49/(x+7) | | 5r+6−8r=9 | | 13(x*x*x*x)=78 | | -5(1-4p)+3=98 | | 1/2x-3/5=1/5x+1/2 | | 5z=16-46 | | 3(b-+4)=5B-2 | | 4(10)-y=-6 |