If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5x*35=7x
We move all terms to the left:
1/5x*35-(7x)=0
Domain of the equation: 5x*35!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-7x+1/5x*35=0
We multiply all the terms by the denominator
-7x*5x*35+1=0
Wy multiply elements
-1225x^2*3+1=0
Wy multiply elements
-3675x^2+1=0
a = -3675; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-3675)·1
Δ = 14700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14700}=\sqrt{4900*3}=\sqrt{4900}*\sqrt{3}=70\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-70\sqrt{3}}{2*-3675}=\frac{0-70\sqrt{3}}{-7350} =-\frac{70\sqrt{3}}{-7350} =-\frac{\sqrt{3}}{-105} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+70\sqrt{3}}{2*-3675}=\frac{0+70\sqrt{3}}{-7350} =\frac{70\sqrt{3}}{-7350} =\frac{\sqrt{3}}{-105} $
| 3n-38=5n-10 | | 5×(10-4x)=50 | | 2x-10/3=-4 | | 6–2x–(2–x^2)=1+(x–3)^2 | | -2x/3-4=4 | | -2x+16=5x-19 | | 8(x-1)-2(x+3)=3(x+1)–(-3x-1)+3x+2 | | 2) 8(x-1)-2(x+3)=3(x+1)–(-3x-1)+3x+2 | | -7x/5+6=-16 | | 5y^2-4y-32=0 | | 6x–3–2x=18–3x | | 2/5m=15 | | 4-(3/4)r=-11 | | 7x-3x+5-8=128x+20-7x+5 | | 32x=25.6 | | 5x+5+6x+7=180 | | 53x+4-2x=7x-3(-2x+11) | | (2/5)q-3=9 | | -y/3+6=8 | | 5(2x/5)=42x5 | | -3+13w=-42 | | -5(x-3)^2=-10 | | k/7-9=-5 | | 6a+12=a+27 | | -2x^2+1=-17 | | 3(2x-7)^2+1=28 | | -x+15=90 | | -48x^2+10=0 | | 2(39–Y)+4y=110 | | m+54=8 | | 78-6y=110 | | 2×-5=3x-15 |