1/5x+1/4=-10/3x-10

Simple and best practice solution for 1/5x+1/4=-10/3x-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+1/4=-10/3x-10 equation:



1/5x+1/4=-10/3x-10
We move all terms to the left:
1/5x+1/4-(-10/3x-10)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x-10)!=0
x∈R
We get rid of parentheses
1/5x+10/3x+10+1/4=0
We calculate fractions
45x^2/240x^2+48x/240x^2+800x/240x^2+10=0
We multiply all the terms by the denominator
45x^2+48x+800x+10*240x^2=0
We add all the numbers together, and all the variables
45x^2+848x+10*240x^2=0
Wy multiply elements
45x^2+2400x^2+848x=0
We add all the numbers together, and all the variables
2445x^2+848x=0
a = 2445; b = 848; c = 0;
Δ = b2-4ac
Δ = 8482-4·2445·0
Δ = 719104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{719104}=848$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(848)-848}{2*2445}=\frac{-1696}{4890} =-848/2445 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(848)+848}{2*2445}=\frac{0}{4890} =0 $

See similar equations:

| 3•(8+x)=60 | | (10x+35)5=15 | | y²=0 | | 34-4x=-70 | | t^2-4.286+2.449=0 | | -15x+6=10+16 | | 0.6=1.1-3.4/a | | 4x+30+6x-40+5x+10=180 | | 3x^2-4/5x-3/5=0 | | 57.85-29.95x=1.99 | | 2x-9=10x-15 | | 57.85-39.95x=1.99 | | x+7+4x=22 | | 8y+12=5 | | 5x^2+17+6=0 | | 2x5^(x+1)=250 | | 7x-12=4x+13 | | 7+4x=22 | | 2345678*2345678=x | | 2x²-3x+2=0 | | 200+50x=70+60x | | x+(2x+34)+(3x+22)=180 | | 13.42+15.5g=–11.89+12.4g−8.48 | | 3x-16=6x+32 | | 200+50m=70+60m | | 4(y+3)=y+18 | | 3+9=13y-5-12y | | 2x+34+3x+22=180 | | -11m-17=82 | | |x+30|=-4x | | (2x+34)+(3x+22)=180 | | x-0.6(x)=272 |

Equations solver categories